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attributed to better nutrition. Damage to nucleic acids such 
as DNA can happen at any stage of life (starting from con-
ception to old age) and has detrimental effects on develop-
ment and organ function due to acquired mutations [3–5]. 
DNA damage events such as cells with multicentric chro-
mosomes, micronuclei, or extremely short telomeres can 
lead to genomic instability [6].

Magnesium is the 4th most abundant mineral present in 
human body and is involved as a cofactor in major meta-
bolic and biochemical pathways within the cell [7–9]. It 
is associated with various functions within the body such 
as strengthening and development of bones, nerve func-
tion, regulating blood sugar and blood pressure [10], pro-
tein metabolism, nucleic acid stability (DNA and RNA), 
and cell proliferation [9]. More than 600 enzymes require 

Introduction

A diet rich in essential micronutrients is key to better health 
and wellbeing and lowers the risk of developmental defects 
and chronic degenerative diseases [1, 2]. Improved infant, 
child and maternal health, stronger immune system, lower 
risk of non-communicable diseases, and longevity can be 
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Abstract
Purpose Magnesium is one of the most common elements in the human body and plays an important role as a cofactor of 
enzymes required for DNA replication and repair and many other biochemical mechanisms including sensing and regulating 
one-carbon metabolism deficiencies. Low intake of magnesium can increase the risk of many diseases, in particular, chronic 
degenerative disorders. However, its role in prevention of DNA damage has not been studied fully in humans so far. There-
fore, we tested the hypothesis that magnesium deficiency either on its own or in conjunction with high homocysteine (Hcy) 
induces DNA damage in vivo in humans.
Methods The present study was carried out in 172 healthy middle aged subjects from South Australia. Blood levels of 
magnesium, Hcy, folate and vitamin B12 were measured. Cytokinesis-Block Micronucleus cytome assay was performed to 
measure three DNA damage biomarkers: micronuclei (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) in 
peripheral blood lymphocytes.
Results Data showed that magnesium and Hcy are significantly inversely correlated with each other (r = − 0.299, p < 0.0001). 
Furthermore, magnesium is positively correlated both with folate (p = 0.002) and vitamin B12 (p = 0.007). Magnesium is 
also significantly inversely correlated with MN (p < 0.0001) and NPB (p < 0.0001). Individuals with low magnesium and 
high Hcy exhibited significantly higher frequency of MN and NPBs compared to those with high magnesium and low Hcy 
(p < 0.0001). Furthermore, there was an interactive effect between these two factors as well in inducing MN (p = 0.01) and 
NPB (p = 0.048).
Conclusions The results obtained in the present study indicate for the first time that low in vivo levels of magnesium either 
on its own or in the presence of high Hcy increases DNA damage as evident by higher frequencies of MN and NPBs.
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magnesium as cofactor and almost 200 require it as an acti-
vator [11, 12]. In addition to these, magnesium also plays an 
important role in DNA repair mechanism pathways as many 
enzymes such as DNA polymerase beta, DNA ligases, and 
DNA endonucleases requires magnesium for their proper 
functioning [13]. Adequate level of magnesium is required 
for efficient DNA replication and DNA repair both of which 
are essential for maintaining genomic stability [13, 14]. It 
has been recently shown that low levels of magnesium are 
associated with shorter telomere length and less sleep [15].

Homocysteine (Hcy) is metabolized from methionine 
obtained from diet and its elevated blood level is associated 
with increased risk for neurodegenerative diseases such as 
dementia, Alzheimer’s and Parkinson’s disease, and neural 
tube defects [16–20]. Accumulation of DNA damage can 
elicit excessive apoptosis or cell death of neurons thereby 
leading to neurological diseases [21–24]. Homocysteine is 
elevated by deficiency of folate and vitamin B12 because 
they are required to convert homocysteine back to methio-
nine [25] and high homocysteine may increase DNA dam-
age by impairing FA/BRCA1 required for repair of DNA 
damage [26].

DNA damage biomarkers such as micronuclei (MN), 
nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) 
are cytogenetic anomalies measured using the cytokinesis-
block micronucleus (CBMN) assay [27]. MN, NPBs and 
NBuds have been validated with regard to their prospec-
tive association with many diseases [28]. It has been shown 
using the CBMN assay and other biomarkers that nutri-
tional status modifies the extent of DNA damage and DNA 
integrity [29]. Nutrient deficiency can induce DNA damage 
because several vitamins and minerals including magne-
sium play an important role in DNA replication and DNA 
repair either as substrate and/or as cofactors of key DNA 
metabolism enzymes [5, 30, 31].

Magnesium plays a critical role in health and develop-
ment, and wellbeing, however, its role in prevention of DNA 
damage has not been studied fully in humans so far. There-
fore, we tested the hypothesis that magnesium deficiency 
either on its own or in conjunction with high homocysteine 
(Hcy) induces DNA damage in vivo in humans.

Materials and methods

Recruitment of study participants

Volunteers were recruited through (i) the Commonwealth 
Scientific and Industrial Research Organisation (CSIRO) 
Clinical Research Unit database in Adelaide, (ii) a local 
Channel 7 TV news report of this study and (iii) advertise-
ments posted in hospitals and universities within Adelaide 

metro area. A total of 172 healthy participants (35–65 years 
old) were recruited who fulfilled the inclusion criteria: 
non-smokers, not currently diagnosed with mild cognitive 
impairment (MCI) or AD, mini-mental state examination 
(MMSE) score ≥ 20, not on medication for life threatening 
diseases (e.g. chemotherapy), not taking daily minerals, fish 
oil or vitamin supplements above the Australian Recom-
mended Dietary Allowance (RDA) level, able to understand 
the study protocol and not on cholesterol lowering medi-
cation. Human Ethics Committee of CSIRO approved the 
study. Overnight fasted blood samples were collected at the 
CSIRO clinic by venipuncture. Blood samples were col-
lected between 8.00–10.00am over a period of six months.

Cytokinesis-Block Micronucleus (CBMN) assay

The assay was performed as described previously [27] 
with slight modifications and isolated lymphocyte cultures 
were set up in duplicate. Cultures were incubated for 1 h in 
a humidified incubator at 37 °C containing 5% CO2. Fol-
lowing this incubation, 45µL phytohaemagglutinin (PHA, 
22.5 mg/mL; Jomar Diagnostics, Australia) was added to 
each culture and these cultures were incubated for further 
44 h prior to the addition of cytochalasin-B (Cyto-B; Sigma, 
Sydney, Australia) to a final concentration of 6 µg/mL Fol-
lowing the addition of Cyto-B, the cultures were incubated 
for another 24 h. Cultured lymphocytes were transferred to 
TV10 tube containing) and centrifugated at 180 ×g at 20 °C 
for 10 min. The supernatant was discarded and lymphocytes 
were re-suspended in 300 µL of RPMI-1640 culture medium 
containing 5.0 µL dimethyl sulfoxide (DMSO; Sigma Aus-
tralia) to facilitate disaggregation of cells. Cells were then 
transferred onto the slides using a cytocentrifuge (Shan-
don, Runcorn, UK). The air-dried slides were fixed, stained 
using Diff-Quik (LabAids, Narrabeen, Australia) and scored 
under code for bi-nucleated (BN) cells containing MN, NPB 
and NBuds as per previously described scoring criteria [27]. 
At least 1000 BN cells were scored per slide to determine 
the frequency of MN, NPB and NBuds in bi-nucleate cells.

Micronutrient analyses

Blood was collected in 2 mL serum tubes and kept at room 
temperature (24 °C) for half an hour before being pro-
cessed by SA Pathology for serum folate analysis. In addi-
tion, blood was also collected in lithium heparin tubes for 
measuring plasma homocysteine and vitamin B12 levels. 
Lithium heparin tubes containing blood were transported to 
SA pathology on ice. Serum and plasma were separated and 
analysed on the same day they were collected as per standard 
protocols by SA Pathology. Serum folate, plasma homocys-
teine, and vitamin B12 concentrations were measured by an 
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Architect® analyser (Abbott Laboratories, IL) in the depart-
ment of Chemical pathology certified diagnostic laboratory 
of SA Pathology (Adelaide, South Australia). For magne-
sium analysis, plasma was isolated from blood collected in 
lithium heparin tube and stored at -80 °C before analysis. 
Concentration of total plasma magnesium (Mg) was mea-
sured by ICP-MS by Waite Analytical Services, Adelaide, 
South Australia. The coefficient of variation of duplicate 
measurements did not exceed 5%.

Statistical analysis

Parametric statistical methods were used for biomarkers 
exhibiting Gaussian distribution. Non-parametric methods 
were employed to analyse the results for biomarkers that do 
not follow Gaussian distribution. Correlation analysis was 
performed by Spearman’s or Pearson’s test depending on 
whether the biomarker data were Gaussian or non-Gauss-
ian in their distribution. The results were adjusted for age 
and gender. Descriptive statistics were used to summarize 
demographic characteristics. We also, performed 2-way 
ANOVA to measure the interactive effects of two factors 
on a specific biomarker (e.g., effect of Hcy and Mg on MN, 
NPBs and NBuds). High or low plasma magnesium and 
Hcy concentration cut off values were based on the median 
concentrations of the study population (low plasma con-
centrations were < 19.5 mg/L and < 9.0 µmol/L, and high 
plasma concentrations were ≥ 19.5 mg/L and ≥ 9.0 µmol/L 
for magnesium and Hcy, respectively). The normal range 
value for plasma magnesium in Australian adults aged 18 
to < 120 years is 0.70 − 1.10 mmol/L. This range equates 
to 17.01–26.73 mg/L. Based on the latter normal range we 
estimate that 94.3% of subjects in our study were within the 
normal range and 5.7% were deficient (i.e. < 17.01 mg/L in 
magnesium. The normal range value for plasma homocys-
teine in Australia for adults is < 15 µmol/L and 99.4% were 
within this normal range. Statistical tests were performed 
using Prism 9.0 (Graphpad Inc., USA) and SPSS (IBM 

SPSS version 23). Significance for all statistical tests was 
set at p < 0.05 for all analyses.

Results

Study participants

Table 1 shows the profile of the study participants. There 
is no significant difference in the ages of males and female 
cases (mean age 54.78 ± 1.2 and 53.79 ± 0.71 respectively). 
BMI is marginally higher in males (27.32 ± 0.77) com-
pared to females (26.49 ± 0.49). Similarly, magnesium and 
Hcy were found to be marginally higher in male partici-
pants (19.48 ± 0.21 mg/L; 8.98 ± 0.44 µmol/L respectively) 
compared to female participants (19.32 ± 0.12 mg/L and 
8.65 ± 0.12 µmol/L respectively). Folate and B12 were mar-
ginally lower in males. MN frequency is significantly higher 
in females compared to males (19.43 ± 0.75 vs. 13.67 ± 1.45 
respectively; p < 0.05). However, NPBs and NBuds were 
found to be marginally lower in males compared to females.

Relationship between Magnesium, Hcy, folate and 
vitamin B12

Plasma magnesium is negatively associated with Hcy 
(r = − 0.299; p < 0.0001; Fig. 1A). Plasma magnesium 
concentration shows significant positive correlation with 
folate (r = 0.236; p = 0.002; Fig. 1B) and vitamin B12 
(r = 0.204; p = 0.007; Fig. 1B). However, Hcy shows a sig-
nificant inverse correlation with serum folate (r = − 0.310; 
p < 0.0001; Fig. 1C), and vitamin B12 (r = − 0.345; 
p < 0.0001; Fig. 1C). Furthermore, serum folate concentra-
tion shows positive correlation with vitamin B12 (r = 0.10; 
p = 0.19; Fig. 2).

Correlation of DNA damage biomarkers with 
Magnesium, Hcy, folate and vitamin B12

Magnesium is significantly inversely correlated with MN 
(r = − 0.337; p < 0.0001; Fig. 3A) and NPB (r = − 0.434; 
p < 0.0001; Fig. 3B). NBuds also shows similar trend but 
it did not reach significance level (r = − 0.083; p = 0.27; 
Fig. 3C). Hcy is significantly positively correlated with MN 
(r = 0.202; p = 0.007; Fig. 3D), NPB (r = 0.298; p < 0.0001; 
Fig. 3E) and NBuds (r = 0.149; p = 0.04; Fig. 3F). Folate 
and vitamin B12 show significant inverse correlation with 
MN (r = − 0.206; p = 0.006 and r = − 0.203; p = 0.007 
respectively; Fig. 4A, B) and not with NPBs (Fig. 4C, D) 
and NBuds (Fig. 4E, F).

Table 1 Baseline characteristics of the study participants
Male Female

Number of participants (n = 172) 36 136
Mean Age (years) 54.78 ± 1.2 53.79 ± 0.71
BMI (Kg/m2) 27.32 ± 0.77 26.49 ± 0.49
Micronuclei (MN) 13.67 ± 1.45 19.43 ± 0.75
Nucleoplasmic bridges (NPBs) 5.52 ± 0.64 5.94 ± 0.33
Nuclear Buds (NBuds) 8.07 ± 0.81 8.33 ± 0.42
Magnesium (mg/L) 19.48 ± 0.21 19.32 ± 0.12
Homocysteine (µmol/L) 8.98 ± 0.44 8.65 ± 0.21
Folate (nmol/L) 33.78 ± 1.52 34.42 ± 0.85
Vitamin B12 (pmol/L) 414.3 ± 29.56 420.4 ± 18.21
All values presented are mean ± SEM
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was marginally higher in people with high magnesium and 
high Hcy compared to those with high magnesium and low 
Hcy. NPB frequency shows similar trend as MN frequency. 
People with low magnesium and high Hcy had significantly 
higher NPB frequency compared to those with high magne-
sium and low Hcy (p < 0.0001; Fig. 5B). Participants with 
low magnesium and low Hcy levels exhibited significantly 
higher NPB frequency compared to those with high mag-
nesium and low Hcy (p = 0.0002; Fig. 5B). Frequency of 
NBuds was found to be lowest in those participants with 
high magnesium and low Hcy compared to those with other 
combinations of magnesium and Hcy, however, NBuds fre-
quency was not found to be significantly different among 
other groups (Fig. 5C).

Interaction effects of Magnesium and Hcy on DNA 
damage biomarkers

The 2-way ANOVA results obtained in the present study 
indicate significant interactions of magnesium and Hcy with 
MN frequency (p = 0.01; Fig. 5A) and NPBs (p = 0.048; 
Fig. 5B), which explained 2.2% and 1.72% variance respec-
tively, however, there was no significant interactive effect 
of magnesium and Hcy with NBuds frequency (p = 0.65; 
Fig. 5C).

Discussion

In the present study, plasma magnesium level was indepen-
dently and inversely associated with DNA damage biomark-
ers even after adjusting for covariates such as gender and 
age. This indicates that higher magnesium levels in blood 
may protect the genome from endogenous genotoxic events. 
Killilea and Ames [32] have shown that primary fibroblasts 
grown in vitro in magnesium deficient medium have accel-
erated shortening of telomeres and enhanced expression of 
senescence related biomarkers in addition to loss of their 
replicative potential. It is possible that chronic magnesium 

Effect of Magnesium and Hcy on DNA damage 
biomarker

Results obtained after 2-way ANOVA indicate that study 
participants with higher plasma levels of magnesium and 
low Hcy had lowest frequency of MN (p < 0.0001; Fig. 5A). 
MN frequency was significantly higher in those with low 
magnesium and high Hcy compared to those with high mag-
nesium and low Hcy (p = 0.0001; Fig. 5A). MN frequency 

Fig. 2 The correlation of vitamin B12 with folate

 
Fig. 1 (A) The correlation of magnesium with Hcy, (B) correlation of 
vitamin B12 (left panel) and folate (right panel) with magnesium, (C) 
correlation of vitamin B12 (left panel) and folate (right panel) with Hcy
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telophase. Magnesium is essential for a vast array of meta-
bolic pathways and its levels like other micronutrients and 
minerals are constantly in flux. Hence, many homeostatic 
pathways must accommodate these subtle alterations in 
magnesium availability to preserve cellular functions like 
ATP production. Ultimately magnesium deficiency leads to 
more DNA breaks and loss of acentric fragments, acceler-
ated telomere attrition and genomic instability [15, 35–37]. 
Although study participants were healthy at the time of 
sampling, the increased DNA damage in people with low 
magnesium levels can cause accelerated tissue aging and 
make them more susceptible to aging related diseases such 
as Alzheimer’s disease and cancers. Therefore, it is increas-
ingly evident that magnesium plays an important role in 

deficiency may result in inducing steady-state oxidative 
stress as is true for deficiency of other micronutrients such 
as zinc [1] perhaps by disrupting mitochondrial DNA syn-
thesis and/or antioxidant function by disrupting glutathi-
one synthesis [33]. If it is true, increased oxidative stress 
caused by low magnesium could result in increased DNA 
strand breaks and/or oxidation of DNA bases [34]. Results 
obtained in the present study shows that people with low 
magnesium have higher DNA damage (i.e. increased num-
ber of MN and NPBs). Higher MN frequency may be due 
to increased unrepaired or mis-repaired DNA breaks that 
lead to acentric chromosome formation. Mis-repair of DNA 
breaks also causes the formation of dicentric chromosomes 
from which NPBs originate when the centromeres are 
pulled to opposite poles of the cells during anaphase and/or 

Fig. 3 The correlation of CBMN 
biomarkers with magnesium and 
Hcy, (A) MN with magnesium, 
(B) NPBs with magnesium, (C) 
NBuds with magnesium, (D) MN 
with Hcy, (E) NPBs with Hcy 
and (F) NBuds with Hcy
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increases pregnancy complications [46, 47] and has det-
rimental effects on the developing brain [16, 48]. In the 
present study we found that MN and NPB frequency is sig-
nificantly elevated in people with high levels of Hcy. Our 
findings are in line with previous reports suggesting DNA 
damaging potential of high Hcy levels [49–53]. It has also 
been shown that Hcy induces inter-strand cross-links via 
oxidative stress that can lead to apoptotic cell death [54]. 
Two recent reports suggest that Hcy in high concentration 
acts as a pro-oxidant due to its interaction with heme pro-
teins of the cells [55, 56]. Hcy can exert its toxicity through 
many pathways such as epigenetic dysregulation leading to 
global hypomethylation, toxic protein modification mainly 
via irreversible N-homocysteinylation and oxidative stress 
[55, 57, 58]. It is quite clear that high levels of Hcy induce 

protecting against genome damage and telomere attrition as 
shown in previous reports [15, 38, 39].

Homocysteine (Hcy) is a thiol containing non-proteino-
genic amino acid formed during the metabolic conversion 
of methionine to cysteine in the cell [40]. Deficiency in vita-
min cofactors such as folate, vitamin B6 and B12 or enzymes 
involved in the folate-methionine pathway specifically in 
their role as cofactors or substrates of enzymes such as meth-
ylenetetrahydrofolate reductase, cystathionine-β-synthase, 
cystathionase or increased intake of foods containing higher 
methionine content leads to significant higher levels of Hcy 
[41–43]. Elevated levels of Hcy (hyperhomocysteinemia) 
in the body are associated with increased risk for diseases 
such as cardiovascular diseases, Alzheimer’s disease [44, 
45]. In addition, higher levels of Hcy in expecting mothers 

Fig. 4 The correlation of CBMN 
biomarkers with vitamin B12 and 
folate, (A) MN with vitamin B12, 
(B) NPBs with vitamin B12, (C) 
NBuds with vitamin B12, (D) MN 
with folate, (E) NPBs with folate 
and (F) NBuds with folate
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oxidative stress that can lead to significant increase in DNA 
damage. Results obtained in the present study clearly points 
to the possible genotoxic consequences of elevated Hcy.

Post-translational modification of proteins [poly(ADP-
ribosyl)ation] plays a critical role in regulating DNA damage 
repair [59, 60], chromatin structure [61–63] and transcrip-
tion [63, 64]. Site-specific post-transcriptional modification 
(PTM) helps in regulating pathways involved in cellular 
signaling and their regulation is crucial for maintenance of 
genome integrity [65, 66]. However, its uncontrolled accu-
mulation can lead to cell death. Furthermore, magnesium is 
required for normal activity of ADP-ribosyl acceptor hydro-
lase-3 (ARH-3). Recently, it has been shown that ARH3 
removes ADP-ribosylation from serine residue [67, 68]. In 
addition to this, it also cleaves the glycosidic bonds between 
ADPR unit, thereby hydrolyzing poly(ADP-ribose) chain, 
suggesting that ARH3 removes PARylation and/or MARy-
lation specifically on serine residue [67–69]. Therefore, 
this accumulated evidence suggests that dePARylation and 
deMARylation like PARylation and/or MARylation play an 
important role in DNA damage repair [70, 71]. Hence it can 
be assumed that if magnesium concentration is inadequate 
or deficient, the efficacy of cellular signaling pathways is 
adversely affected leading to ineffective DNA repair thus 
resulting in increased DNA damage.

We have previously reported that Hcy is strongly associ-
ated with magnesium [15]. A recent report found a signifi-
cant reduction in Hcy levels on treatment with magnesium 
sulfate and phentolamine in pregnant women [72]. Hence, 
we assume that magnesium treatment has been able to lower 
Hcy levels. Based on these findings, we anticipated lower 
DNA damage rates in people with high magnesium and low 
Hcy compared to those with low magnesium and high Hcy 
concentration in our cohort. Our results indeed indicate that 
MN and NPB frequency was lowest in those participants 
who had high magnesium and low Hcy compared to those 
with other combinations. This is the first study to report that 
high magnesium levels along with low Hcy are protective in 
maintaining genome integrity in humans.

Figure 6 summarizes the mechanisms by which mag-
nesium deficiency and high Hcy cause DNA damage and 
accelerated aging.

Conclusions

Finally, it can be concluded that low levels of magnesium 
can have adverse cellular impact by increasing DNA dam-
age rate. Furthermore, low magnesium interacts with high 
Hcy to increase MN and NPBs which can increase the 
risk of age-related diseases such as neurodegenerative dis-
eases, chronic diseases, cancers and accelerated aging. In 

Fig. 5 (A) Two-way ANOVA analysis of independent and interactive 
effects of magnesium and Hcy on MN, (B) Two-way ANOVA analysis 
of independent and interactive effects of magnesium and Hcy on NPBs 
and (C) Two-way ANOVA analysis of independent and interactive 
effects of magnesium and Hcy on NBuds. Mean values of each sub-
group for three biomarkers are given in the boxes
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